Difference between revisions of "Chapter 2 Problem 66"

From 105/106 Lecture Notes by OBM
(Created page with "==Problem== A rock is thrown vertically upward with a speed of 12.0 m/s. Exactly 1.00 s later, a ball is thrown up vertically along the same path with a speed of 18.0 m/s. (...")
 
 
(3 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
<math>y_\textrm{rock} = y_0 + v_{0\textrm{ rock}}t + \frac{1}{2}at^2 =v_{0\textrm{ rock}}t + \frac{1}{2}gt^2</math>,
 
<math>y_\textrm{rock} = y_0 + v_{0\textrm{ rock}}t + \frac{1}{2}at^2 =v_{0\textrm{ rock}}t + \frac{1}{2}gt^2</math>,
  
where <math>t</math> is the time elapsed from the throwing of the rock.  
+
where <math>t</math> is the time elapsed from the throwing of the rock.  
  
 
The equation of motion for the ball, being thrown 1.00 s later, is
 
The equation of motion for the ball, being thrown 1.00 s later, is
  
<math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math>
+
<math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math>
 +
 
 +
Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision.
 +
 
 +
<math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}t + \frac{1}{2}gt^2 = v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 \rightarrow</math>
 +
 
 +
<math>\left(12.0 \textrm{m/s}\right)t - \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)t^2=\left(18.0 \textrm{m/s}\right)(t -1.00\textrm{s})- \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)(t-1.00\textrm{s})^2\rightarrow</math>
 +
 
 +
<math>\left(15.8 \textrm{m/s}\right)t=\left(22.9 \textrm{m}\right)\rightarrow t=1.45 \textrm{s}</math>
 +
 
 +
===(b)===
 +
Use the time of the collision in any trajectory
 +
<math>y_\textrm{rock} =v_{0\textrm{ rock}}t + \frac{1}{2}gt^2=\left(12.0 \textrm{m/s}\right)\left(1.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(1.45 \textrm{s}\right)^2=7.10 \textrm{m}</math>
 +
 
 +
===(c)===
 +
Now the ball is thrown first so:
 +
 
 +
<math>y_\textrm{ball} = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 </math>
 +
 
 +
and
 +
 
 +
<math>y_\textrm{rock} = v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2</math>
 +
 
 +
<math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2 = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 \rightarrow</math>
 +
 
 +
<math>\left(3.8 \textrm{m/s}\right)t=\left(16.9 \textrm{m}\right)\rightarrow t=4.45 \textrm{s}</math>
 +
 
 +
Does this answer make sense?
 +
 
 +
<math>y_\textrm{ball} =v_{0\textrm{ ball}}t + \frac{1}{2}gt^2=\left(18.0 \textrm{m/s}\right)\left(4.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(4.45 \textrm{s}\right)^2=-16.9 \textrm{m}</math>
 +
 
 +
The coordinate is below ground! So they never collide.

Latest revision as of 21:25, 24 September 2019

Problem

A rock is thrown vertically upward with a speed of 12.0 m/s. Exactly 1.00 s later, a ball is thrown up vertically along the same path with a speed of 18.0 m/s.

(a) At what time will they strike each other?

(b) At what height will the collision occur?

(c) Answer (a) and (b) assuming that the order is reversed: the ball is thrown 1.00 s before the rock.

Solution

(a)

Choose up to be the positive direction. Let the throwing height of both objects be the = 0 location, and so = 0 for both objects. The acceleration of both objects is .

The equation of motion for the rock:

,

where is the time elapsed from the throwing of the rock.

The equation of motion for the ball, being thrown 1.00 s later, is

Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision.

(b)

Use the time of the collision in any trajectory

(c)

Now the ball is thrown first so:

and

Does this answer make sense?

The coordinate is below ground! So they never collide.