Difference between revisions of "Chapter 4 Problem 59"
From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== 200px|center|diagram Determine a formula for the magnitude of the force <math>\vec{F}</math> exerted on the large block <...") |
|||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
==Problem== | ==Problem== | ||
− | [[File:Chapter4Problem59q.png| | + | [[File:Chapter4Problem59q.png|300px|center|diagram]] |
Determine a formula for the magnitude of the force <math>\vec{F}</math> exerted on the large block <math>m_C</math> so that the mass <math>m_A</math> does not move relative to <math>m_c</math>. Ignore all friction. Assume <math>m_B</math> does not make contact with <math>m_C</math> | Determine a formula for the magnitude of the force <math>\vec{F}</math> exerted on the large block <math>m_C</math> so that the mass <math>m_A</math> does not move relative to <math>m_c</math>. Ignore all friction. Assume <math>m_B</math> does not make contact with <math>m_C</math> | ||
==Solution== | ==Solution== | ||
− | + | [[File:Chapter4Problem59s1.png|200px|left|diagram]][[File:Chapter4Problem59s2.png|200px|right|diagram]] | |
− | ===( | + | The force <math>F</math> is accelerating the total mass, since it is the only force external to the |
+ | system. | ||
+ | |||
+ | If mass <math>m_A</math> does not move relative to <math>m_C</math> , then all the blocks have the same horizontal acceleration, and none of the blocks have vertical acceleration. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>m_B</math>: | ||
+ | |||
+ | <math>\sum F_x = F_T \sin\theta = m_B a</math> | ||
+ | |||
+ | <math>\sum F_y = F_T \cos\theta -m_Bg=0 \rightarrow F_T \cos\theta= m_B g</math> | ||
+ | |||
+ | Taking the squares: | ||
+ | |||
+ | <math> F_T^2 \sin^2\theta = m_B^2 a^2</math> | ||
+ | <math>;F_T^2 \cos^2\theta= m_B^2 g^2</math> | ||
+ | |||
+ | and adding them together returns the relationship | ||
+ | |||
+ | <math>F_T^2\left(\sin^2\theta+\cos^2\theta\right)= m_B^2\left(g^2+a^2\right)</math> | ||
+ | |||
+ | <math>F_T^2= m_B^2\left(g^2+a^2\right)</math> | ||
+ | |||
+ | turning our attention to <math>m_a</math>: | ||
+ | |||
+ | <math>\sum F_x = F_T = m_A a</math> | ||
+ | <math>\rightarrow F_T^2 = m_A^2 a^2</math> | ||
+ | |||
+ | <math>\sum F_y = F_N -m_Ag=0 </math> | ||
+ | |||
+ | solve for <math>\left|\vec{a}\right|=a</math> | ||
+ | |||
+ | <math>F_T^2= m_B^2\left(g^2+a^2\right)=m_A^2a^2</math> | ||
+ | <math>\rightarrow a^2=\frac{m_B^2g^2}{\left(m_A^2-m_B^2\right)}</math> | ||
+ | <math>\rightarrow a=\frac{m_Bg}{\sqrt{m_A^2-m_B^2}}\rightarrow</math> | ||
+ | |||
+ | <math>F=\left(m_A+m_B+m_C\right)a=\frac{m_B\left(m_A+m_B+m_C\right)}{\sqrt{m_A^2-m_B^2}}g</math> |
Latest revision as of 20:07, 14 October 2019
Problem
Determine a formula for the magnitude of the force exerted on the large block so that the mass does not move relative to . Ignore all friction. Assume does not make contact with
Solution
The force is accelerating the total mass, since it is the only force external to the system.
If mass does not move relative to , then all the blocks have the same horizontal acceleration, and none of the blocks have vertical acceleration.
:
Taking the squares:
and adding them together returns the relationship
turning our attention to :
solve for