Difference between revisions of "Chapter 9 Problem 36"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== A 0.280-kg croquet ball makes an elastic head-on collision with a second ball initially at rest. The second ball moves off with half the original speed o...")
 
 
Line 10: Line 10:
  
 
===(a)===
 
===(a)===
 +
conservation of momentum:
 +
<math>p_i=p_f</math>
 +
<math>m_A v_A + m_B v_B = m_A v^\prime_A + m_B v^\prime_B</math>
 +
 +
<math> \rightarrow m_A \left(v_A - v^\prime_A \right)= m_B \left(v^\prime_B - v_B\right) </math>
 +
 +
conservation of energy:
 +
<math>\frac{1}{2}m_A V_A^2 + \frac{1}{2}m_B V_B^2 = \frac{1}{2}m_A V_A^{\prime 2} + \frac{1}{2}m_B V_B^{\prime 2}</math>
 +
 +
<math> \rightarrow m_A \left(v_A^2 - v^{\prime 2}_A \right)= m_B \left(v^{\prime 2}_B - v_B^2\right) </math>
 +
 +
<math>\left[m_A \left(v_A - v^\prime_A \right)\right]\left(v_A + v^\prime_A \right)=\left[m_B \left(v^\prime_B - v_B\right)\right] \left(v^\prime_B + v_B\right)</math>
 +
 +
<math>\rightarrow \left(v_A + v^\prime_A \right)=\left(v^\prime_B + v_B\right)</math>
 +
 +
 
<math>v_A-v_B=-\left(v^\prime_A -v^\prime_B\right)</math>
 
<math>v_A-v_B=-\left(v^\prime_A -v^\prime_B\right)</math>
 
<math>\rightarrow v^\prime_A=-\frac{1}{2}v_A</math>
 
<math>\rightarrow v^\prime_A=-\frac{1}{2}v_A</math>
  
<math>p_i=p_f</math>
+
pluging this back to conservation of momentum equation:
<math>\rightarrow m_A v_A + m_B v_B = m_Av^\prime_A +m_Bv^\prime_B</math>
+
 
 
<math>\rightarrow m_A v_a = -\frac{1}{2}m_A v_A +m_B \frac{1}{2}v_A  </math>
 
<math>\rightarrow m_A v_a = -\frac{1}{2}m_A v_A +m_B \frac{1}{2}v_A  </math>
 +
 
<math>\rightarrow m_B=3m_A=3\left(0.280\text{kg}\right)=\left(0.840\text{kg}\right)</math>
 
<math>\rightarrow m_B=3m_A=3\left(0.280\text{kg}\right)=\left(0.840\text{kg}\right)</math>
  

Latest revision as of 17:16, 25 November 2019

Problem

A 0.280-kg croquet ball makes an elastic head-on collision with a second ball initially at rest. The second ball moves off with half the original speed of the first ball.

(a) What is the mass of the second ball?

(b) What fraction of the original kinetic energy () gets transferred to the second ball?

Solution

This is a head-on 1D collision. Call the direction of the first ball the positive direction. Let A represent the first ball, and B represent the second ball. and

(a)

conservation of momentum:

conservation of energy:


pluging this back to conservation of momentum equation:

(b)