Difference between revisions of "Chapter 11 Problem 26"
From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== Show that the cross product of two vectors <math>\vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}</math>, and <math>\vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}</mat...") |
|||
Line 5: | Line 5: | ||
<math>\vec{A}\times\vec{B}=\left(A_yB_z-A_zB_y\right)\hat{i}+\left(A_zB_x-A_xB_z\right)\hat{i}+\left(A_xB_y-A_yB_x\right)\hat{k}</math> | <math>\vec{A}\times\vec{B}=\left(A_yB_z-A_zB_y\right)\hat{i}+\left(A_zB_x-A_xB_z\right)\hat{i}+\left(A_xB_y-A_yB_x\right)\hat{k}</math> | ||
− | + | Then show that the cross product can be written | |
<math>\vec{A}\times\vec{B}=\left| \begin{array}{ccc} | <math>\vec{A}\times\vec{B}=\left| \begin{array}{ccc} | ||
Line 12: | Line 12: | ||
B_x & B_y & B_z \end{array} \right|</math> | B_x & B_y & B_z \end{array} \right|</math> | ||
− | where we use the rules for evaluating a determinant. | + | where we use the rules for evaluating a determinant. |
+ | |||
==Solution== | ==Solution== | ||
===(a)=== | ===(a)=== |
Latest revision as of 00:43, 18 December 2019
Problem
Show that the cross product of two vectors , and is
Then show that the cross product can be written
where we use the rules for evaluating a determinant.
Solution
(a)
(b)