Difference between revisions of "Chapter 22 Problem 30"

From 105/106 Lecture Notes by OBM
Line 17: Line 17:
 
<math>\vec{E}_T=\vec{E}_\textrm{sphere}+\vec{E}_q</math>
 
<math>\vec{E}_T=\vec{E}_\textrm{sphere}+\vec{E}_q</math>
  
<math>E_q=\frac{q}{4\pi\epsilon_0r^2}<math> (radially pointing from the charge)
+
<math>E_q=\frac{q}{4 \pi \epsilon_0 r^2}</math> (radially pointing from the charge)
  
<math>E_\textrm{sphere}\rightarrow \oint \vec{E} \cdot d\vec{A}=E(4\pi\r^2)=\frac{Q_\textrm{encl}}{\epsilon_0}</math> (radial direction)
+
<math>E_\textrm{sphere}\rightarrow \oint \vec{E} \cdot d\vec{A}=E(4\pi r^2)=\frac{Q_\textrm{encl}}{\epsilon_0}</math> (radial direction)
  
 
<math>E_\textrm{sphere}=\frac{Q_\textrm{encl}}{4\pi\epsilon_0 r^2}</math>
 
<math>E_\textrm{sphere}=\frac{Q_\textrm{encl}}{4\pi\epsilon_0 r^2}</math>
  
 
so the question is about finding the <math>Q_\textrm{encl}</math>
 
so the question is about finding the <math>Q_\textrm{encl}</math>

Revision as of 07:21, 21 March 2019

Problem

Non-conducting sphere with a charge inside

A nonconducting sphere has a spherical cavity of radius centered at the sphere’s center. Assuming the charge is distributed uniformly in the “shell” (between and ), determine the electric field as a function of for

(a)

(b)

(c)

Solution

Superposition principle

(radially pointing from the charge)

(radial direction)

so the question is about finding the