Difference between revisions of "Chapter 2 Problem 66"
(→(a)) |
|||
Line 22: | Line 22: | ||
<math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math> | <math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math> | ||
+ | |||
+ | Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision. | ||
+ | |||
+ | <math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}t + \frac{1}{2}gt^2 = v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 \rightarrow</math> | ||
+ | |||
+ | <math>\left(12.0 \textrm{m/s}\right)t - \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)t^2=\left(18.0 \textrm{m/s}\right)(t -1.00\textrm{s})- \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)(t-1.00\textrm{s})^2\rightarrow</math> | ||
+ | |||
+ | <math>\left(15.8 \textrm{m/s}\right)t=(22.9 \textrm{m}\right)\rightarrow t=1.45 \textrm{s}</math> | ||
+ | |||
+ | ===(b)=== | ||
+ | Use the time of the collision in any trajectory | ||
+ | <math>y_\textrm{rock} =v_{0\textrm{ rock}}t + \frac{1}{2}gt^2=\left(12.0 \textrm{m/s}\right)\left(1.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(1.45 \textrm{s}\right)^2=7.10 \textrm{m}</math> | ||
+ | |||
+ | ===(c)=== | ||
+ | Now the ball is thrown first so: | ||
+ | |||
+ | <math>y_\textrm{ball} = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 </math> | ||
+ | |||
+ | and | ||
+ | |||
+ | <math>y_\textrm{rock} = v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2</math> | ||
+ | |||
+ | <math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2 = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 \rightarrow</math> | ||
+ | |||
+ | <math>\left(3.8 \textrm{m/s}\right)t=(16.9 \textrm{m}\right)\rightarrow t=4.45 \textrm{s}</math> | ||
+ | |||
+ | Does this answer make sense? | ||
+ | |||
+ | <math>y_\textrm{ball} =v_{0\textrm{ ball}}t + \frac{1}{2}gt^2=\left(18.0 \textrm{m/s}\right)\left(4.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(4.45 \textrm{s}\right)^2=-16.9 \textrm{m}</math> | ||
+ | |||
+ | The coordinate is below ground! So they never collide. |
Revision as of 21:23, 24 September 2019
Problem
A rock is thrown vertically upward with a speed of 12.0 m/s. Exactly 1.00 s later, a ball is thrown up vertically along the same path with a speed of 18.0 m/s.
(a) At what time will they strike each other?
(b) At what height will the collision occur?
(c) Answer (a) and (b) assuming that the order is reversed: the ball is thrown 1.00 s before the rock.
Solution
(a)
Choose up to be the positive direction. Let the throwing height of both objects be the = 0 location, and so = 0 for both objects. The acceleration of both objects is .
The equation of motion for the rock:
,
where is the time elapsed from the throwing of the rock.
The equation of motion for the ball, being thrown 1.00 s later, is
Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision.
Failed to parse (syntax error): {\displaystyle \left(15.8 \textrm{m/s}\right)t=(22.9 \textrm{m}\right)\rightarrow t=1.45 \textrm{s}}
(b)
Use the time of the collision in any trajectory
(c)
Now the ball is thrown first so:
and
Failed to parse (syntax error): {\displaystyle \left(3.8 \textrm{m/s}\right)t=(16.9 \textrm{m}\right)\rightarrow t=4.45 \textrm{s}}
Does this answer make sense?
The coordinate is below ground! So they never collide.