Difference between revisions of "Chapter 2 Problem 66"

From 105/106 Lecture Notes by OBM
Line 22: Line 22:
  
 
<math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math>
 
<math>y_\textrm{ball} = y_0 + v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}a(t -1.00\textrm{s})^2=v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 </math>
 +
 +
Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision.
 +
 +
<math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}t + \frac{1}{2}gt^2 = v_{0\textrm{ ball}} (t -1.00\textrm{s})+\frac{1}{2}g(t-1.00\textrm{s})^2 \rightarrow</math>
 +
 +
<math>\left(12.0 \textrm{m/s}\right)t - \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)t^2=\left(18.0 \textrm{m/s}\right)(t -1.00\textrm{s})- \frac{1}{2}\left(9.80 \textrm{m/s}^2\right)(t-1.00\textrm{s})^2\rightarrow</math>
 +
 +
<math>\left(15.8 \textrm{m/s}\right)t=(22.9 \textrm{m}\right)\rightarrow t=1.45 \textrm{s}</math>
 +
 +
===(b)===
 +
Use the time of the collision in any trajectory
 +
<math>y_\textrm{rock} =v_{0\textrm{ rock}}t + \frac{1}{2}gt^2=\left(12.0 \textrm{m/s}\right)\left(1.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(1.45 \textrm{s}\right)^2=7.10 \textrm{m}</math>
 +
 +
===(c)===
 +
Now the ball is thrown first so:
 +
 +
<math>y_\textrm{ball} = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 </math>
 +
 +
and
 +
 +
<math>y_\textrm{rock} = v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2</math>
 +
 +
<math>y_\textrm{rock} = y_\textrm{ball}\rightarrow v_{0\textrm{ rock}}(t -1.00\textrm{s}) + \frac{1}{2}g(t -1.00\textrm{s})^2 = v_{0\textrm{ ball}} t+\frac{1}{2}gt^2 \rightarrow</math>
 +
 +
<math>\left(3.8 \textrm{m/s}\right)t=(16.9 \textrm{m}\right)\rightarrow t=4.45 \textrm{s}</math>
 +
 +
Does this answer make sense?
 +
 +
<math>y_\textrm{ball} =v_{0\textrm{ ball}}t + \frac{1}{2}gt^2=\left(18.0 \textrm{m/s}\right)\left(4.45 \textrm{s}\right)+\frac{1}{2}\left(9.80 \textrm{m/s}^2\right)\left(4.45 \textrm{s}\right)^2=-16.9 \textrm{m}</math>
 +
 +
The coordinate is below ground! So they never collide.

Revision as of 21:23, 24 September 2019

Problem

A rock is thrown vertically upward with a speed of 12.0 m/s. Exactly 1.00 s later, a ball is thrown up vertically along the same path with a speed of 18.0 m/s.

(a) At what time will they strike each other?

(b) At what height will the collision occur?

(c) Answer (a) and (b) assuming that the order is reversed: the ball is thrown 1.00 s before the rock.

Solution

(a)

Choose up to be the positive direction. Let the throwing height of both objects be the = 0 location, and so = 0 for both objects. The acceleration of both objects is .

The equation of motion for the rock:

,

where is the time elapsed from the throwing of the rock.

The equation of motion for the ball, being thrown 1.00 s later, is

Set the two equations equal(meaning the two objects are at the same place) and solve for the time of the collision.

Failed to parse (syntax error): {\displaystyle \left(15.8 \textrm{m/s}\right)t=(22.9 \textrm{m}\right)\rightarrow t=1.45 \textrm{s}}

(b)

Use the time of the collision in any trajectory

(c)

Now the ball is thrown first so:

and

Failed to parse (syntax error): {\displaystyle \left(3.8 \textrm{m/s}\right)t=(16.9 \textrm{m}\right)\rightarrow t=4.45 \textrm{s}}

Does this answer make sense?

The coordinate is below ground! So they never collide.