Difference between revisions of "Chapter 3 Problem 24"

From 105/106 Lecture Notes by OBM
 
Line 14: Line 14:
 
<math>\vec{v}=\vec{v}_0+\vec{a}t=5.0 \hat{i}\textrm{m/s} + (-3.0t\hat{i} +4.5t\hat{j})\textrm{m/s}</math>
 
<math>\vec{v}=\vec{v}_0+\vec{a}t=5.0 \hat{i}\textrm{m/s} + (-3.0t\hat{i} +4.5t\hat{j})\textrm{m/s}</math>
  
<math>v_x=(5.0-3.0t)\textrm{m/s}\rightarrow v_{xm}=0=5.0-3.0t_{xm})\textrm{m/s}\rightarrow t_{xm}=\frac{5.0\textrm{m/s}}{3.0\textrm{m/s}^2}=1.67\textrm{s}</math>
+
<math>v_x=(5.0-3.0t)\textrm{m/s}\rightarrow v_{xm}=0=(5.0-3.0t_{xm})\textrm{m/s}\rightarrow t_{xm}=\frac{5.0\textrm{m/s}}{3.0\textrm{m/s}^2}=1.67\textrm{s}</math>
  
 
<math>\vec{v}(t_{xm})=5.0 \hat{i}\textrm{m/s} + \left(-3.0(1.67)\hat{i} +4.5(1.67)\hat{j}\right)\textrm{m/s}=7.5\textrm{m/s}\hat{j}</math>
 
<math>\vec{v}(t_{xm})=5.0 \hat{i}\textrm{m/s} + \left(-3.0(1.67)\hat{i} +4.5(1.67)\hat{j}\right)\textrm{m/s}=7.5\textrm{m/s}\hat{j}</math>

Latest revision as of 22:51, 7 October 2019

Problem

A particle starts from the origin at with an initial velocity of m/s along the positive axis. If the acceleration is m/s, determine the velocity and position of the particle at the moment it reaches its maximum coordinate.

Solution

The acceleration is constant.

The particle reaches its maximum coordinate when the velocity is 0.