Difference between revisions of "Chapter 10 Problem 68"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== ==Solution== <math></math>")
 
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
==Problem==
 
==Problem==
 +
[[File:Chapter10Problem68q.png|250px|center|diagram]]
 +
A 4.00-kg mass and a 3.00-kg mass are attached to opposite ends of a thin 42.0-cm-long horizontal rod. The system is rotating at angular speed <math>\omega=5.60 </math> rad/s about a vertical axle at the center of the rod. Determine
  
 +
(a) the kinetic energy K of the system, and
 +
 +
(b) the net force on each mass.
 +
 +
(c) Repeat parts (a) and (b) assuming that the axle passes through the CM of the system.
 
==Solution==
 
==Solution==
 +
===(a)===
 +
Let A represent the heavier mass, and B the lighter mass. The rod has negligible mass thus negligible kinetic energy.
 +
 +
<math>K=\frac{1}{2}I_A\omega_A^2+\frac{1}{2}I_B\omega_B^2=\frac{1}{2}m_Ar_A^2\omega^2+\frac{1}{2}m_Br_B^2\omega^2=\frac{1}{2}r^2\omega^2(m_A+m_B)</math>
 +
 +
<math>\frac{1}{2}(0.210 \text{m})^2(5.60 \text{rad/s})^2(7.0\text{kg})=4.84 \text{J}</math>
 +
 +
===(b)===
 +
 +
<math>F_A=m_A r_A \omega_A^2=(4.0\text{kg})(0.210 \text{m})(5.60 \text{rad/s})^2=26.3 \text{N}</math>
 +
 +
<math>F_B=m_B r_B \omega_B^2=(3.0\text{kg})(0.210 \text{m})(5.60 \text{rad/s})^2=19.8 \text{N}</math>
 +
 +
===(c)===
 +
<math>x_\text{CM}=\frac{m_A x_A+m_B x_B}{m_A+m_B}=\frac{(4.0\text{kg})(0)+(3.0\text{kg})(0.420 \text{m})}{7.0\text{kg}}=0.180 \text{m}</math> (from mass A)
 +
 +
<math>K=\frac{1}{2}I_A\omega_A^2+\frac{1}{2}I_B\omega_B^2=\frac{1}{2}m_Ar_A^2\omega^2+\frac{1}{2}m_Br_B^2\omega^2=\frac{1}{2}\omega^2(m_A r_A^2+m_B r_B^2)</math>
 +
 +
<math>=\frac{1}{2}(5.60 \text{rad/s})^2\left[(4.0\text{kg})(0.180 \text{m})^2+(3.0\text{kg})(0.240 \text{m})^2\right]=4.74 \text{J}</math>
 +
 +
<math>F_A=m_A r_A \omega_A^2=(4.0\text{kg})(0.180 \text{m})(5.60 \text{rad/s})^2=22.6 \text{N}</math>
  
 +
<math>F_B=m_B r_B \omega_B^2=(3.0\text{kg})(0.240 \text{m})(5.60 \text{rad/s})^2=22.6 \text{N}</math>
  
 
<math></math>
 
<math></math>

Revision as of 22:55, 10 December 2019

Problem

diagram

A 4.00-kg mass and a 3.00-kg mass are attached to opposite ends of a thin 42.0-cm-long horizontal rod. The system is rotating at angular speed rad/s about a vertical axle at the center of the rod. Determine

(a) the kinetic energy K of the system, and

(b) the net force on each mass.

(c) Repeat parts (a) and (b) assuming that the axle passes through the CM of the system.

Solution

(a)

Let A represent the heavier mass, and B the lighter mass. The rod has negligible mass thus negligible kinetic energy.

(b)

(c)

(from mass A)