Difference between revisions of "Chapter 4 Problem 70"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== A 75.0-kg person stands on a scale in an elevator. What does the scale read (in N and in kg) when (a) the elevator is at rest, (b) the elevator is cl...")
 
 
Line 22: Line 22:
 
The scale always take acceleration as <math>g</math>, thus
 
The scale always take acceleration as <math>g</math>, thus
  
<math>\textrm{scale approximated mass}=\frac{F_N}{g}=m\frac{(g+a)}{g}</math>
+
<math>\text{scale approximated mass}=\frac{F_N}{g}=m\frac{(g+a)}{g}</math>
  
 
===(a)===
 
===(a)===
Line 29: Line 29:
 
<math>F_N=mg=\left(75.0 \textrm{kg}\right)\left(9.80 \textrm{m/s}^2\right)=7.35\times 10^2 \textrm{N}</math>
 
<math>F_N=mg=\left(75.0 \textrm{kg}\right)\left(9.80 \textrm{m/s}^2\right)=7.35\times 10^2 \textrm{N}</math>
  
<math>\textrm{scale approximated mass}=m\frac{(g)}{g}=75.0 \textrm{kg}</math>
+
<math>\text{scale approximated mass}=m\frac{(g)}{g}=75.0 \textrm{kg}</math>
  
 
===(b)===
 
===(b)===
 
<math>a=0</math>;
 
<math>a=0</math>;
 
<math>F_N=7.35\times 10^2 \textrm{N}</math>;
 
<math>F_N=7.35\times 10^2 \textrm{N}</math>;
<math>\textrm{scale approximated mass}=75.0 \textrm{kg}</math>;
+
<math>\text{scale approximated mass}=75.0 \textrm{kg}</math>;
  
 
===(c)===
 
===(c)===
 
<math>a=0</math>;
 
<math>a=0</math>;
 
<math>F_N=7.35\times 10^2 \textrm{N}</math>;
 
<math>F_N=7.35\times 10^2 \textrm{N}</math>;
<math>\textrm{scale approximated mass}=75.0 \textrm{kg}</math>;
+
<math>\text{scale approximated mass}=75.0 \textrm{kg}</math>;
  
 
===(d)===
 
===(d)===
Line 45: Line 45:
 
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(12.80 \textrm{m/s}^2\right)=9.60\times 10^2 \textrm{N}</math>
 
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(12.80 \textrm{m/s}^2\right)=9.60\times 10^2 \textrm{N}</math>
  
<math>\textrm{scale approximated mass}=\frac{960\textrm{N}}{9.80 \textrm{m/s}^2}=98.0 \textrm{kg}</math>
+
<math>\text{scale approximated mass}=\frac{960\textrm{N}}{9.80 \textrm{m/s}^2}=98.0 \textrm{kg}</math>
  
 
===(e)===
 
===(e)===
 
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(6.80 \textrm{m/s}^2\right)=5.1\times 10^2 \textrm{N}</math>
 
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(6.80 \textrm{m/s}^2\right)=5.1\times 10^2 \textrm{N}</math>
  
<math>\textrm{scale approximated mass}=\frac{510\textrm{N}}{9.80 \textrm{m/s}^2}=52.0 \textrm{kg}</math>
+
<math>\text{scale approximated mass}=\frac{510\textrm{N}}{9.80 \textrm{m/s}^2}=52.0 \textrm{kg}</math>

Latest revision as of 21:40, 14 October 2019

Problem

A 75.0-kg person stands on a scale in an elevator. What does the scale read (in N and in kg) when

(a) the elevator is at rest,

(b) the elevator is climbing at a constant speed of 3.0 m/s,

(c) the elevator is descending at 3.0 m/s,

(d) the elevator is accelerating upward at 3.0 m/s ,

(e) the elevator is accelerating downward at 3.0 m/s?

Solution

diagram

Newton’s second law for the person:

The scale always take acceleration as , thus

(a)

(b)

; ; ;

(c)

; ; ;

(d)

(e)