Difference between revisions of "Chapter 4 Problem 70"
From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== A 75.0-kg person stands on a scale in an elevator. What does the scale read (in N and in kg) when (a) the elevator is at rest, (b) the elevator is cl...") |
|||
Line 22: | Line 22: | ||
The scale always take acceleration as <math>g</math>, thus | The scale always take acceleration as <math>g</math>, thus | ||
− | <math>\ | + | <math>\text{scale approximated mass}=\frac{F_N}{g}=m\frac{(g+a)}{g}</math> |
===(a)=== | ===(a)=== | ||
Line 29: | Line 29: | ||
<math>F_N=mg=\left(75.0 \textrm{kg}\right)\left(9.80 \textrm{m/s}^2\right)=7.35\times 10^2 \textrm{N}</math> | <math>F_N=mg=\left(75.0 \textrm{kg}\right)\left(9.80 \textrm{m/s}^2\right)=7.35\times 10^2 \textrm{N}</math> | ||
− | <math>\ | + | <math>\text{scale approximated mass}=m\frac{(g)}{g}=75.0 \textrm{kg}</math> |
===(b)=== | ===(b)=== | ||
<math>a=0</math>; | <math>a=0</math>; | ||
<math>F_N=7.35\times 10^2 \textrm{N}</math>; | <math>F_N=7.35\times 10^2 \textrm{N}</math>; | ||
− | <math>\ | + | <math>\text{scale approximated mass}=75.0 \textrm{kg}</math>; |
===(c)=== | ===(c)=== | ||
<math>a=0</math>; | <math>a=0</math>; | ||
<math>F_N=7.35\times 10^2 \textrm{N}</math>; | <math>F_N=7.35\times 10^2 \textrm{N}</math>; | ||
− | <math>\ | + | <math>\text{scale approximated mass}=75.0 \textrm{kg}</math>; |
===(d)=== | ===(d)=== | ||
Line 45: | Line 45: | ||
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(12.80 \textrm{m/s}^2\right)=9.60\times 10^2 \textrm{N}</math> | <math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(12.80 \textrm{m/s}^2\right)=9.60\times 10^2 \textrm{N}</math> | ||
− | <math>\ | + | <math>\text{scale approximated mass}=\frac{960\textrm{N}}{9.80 \textrm{m/s}^2}=98.0 \textrm{kg}</math> |
===(e)=== | ===(e)=== | ||
<math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(6.80 \textrm{m/s}^2\right)=5.1\times 10^2 \textrm{N}</math> | <math>F_N=m(g+a)=\left(75.0 \textrm{kg}\right)\left(6.80 \textrm{m/s}^2\right)=5.1\times 10^2 \textrm{N}</math> | ||
− | <math>\ | + | <math>\text{scale approximated mass}=\frac{510\textrm{N}}{9.80 \textrm{m/s}^2}=52.0 \textrm{kg}</math> |
Latest revision as of 21:40, 14 October 2019
Problem
A 75.0-kg person stands on a scale in an elevator. What does the scale read (in N and in kg) when
(a) the elevator is at rest,
(b) the elevator is climbing at a constant speed of 3.0 m/s,
(c) the elevator is descending at 3.0 m/s,
(d) the elevator is accelerating upward at 3.0 m/s ,
(e) the elevator is accelerating downward at 3.0 m/s?
Solution
Newton’s second law for the person:
The scale always take acceleration as , thus
(a)
(b)
; ; ;
(c)
; ; ;
(d)
(e)