Difference between revisions of "Chapter 11 Problem 26"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== Show that the cross product of two vectors <math>\vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}</math>, and <math>\vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}</mat...")
 
 
Line 5: Line 5:
 
<math>\vec{A}\times\vec{B}=\left(A_yB_z-A_zB_y\right)\hat{i}+\left(A_zB_x-A_xB_z\right)\hat{i}+\left(A_xB_y-A_yB_x\right)\hat{k}</math>
 
<math>\vec{A}\times\vec{B}=\left(A_yB_z-A_zB_y\right)\hat{i}+\left(A_zB_x-A_xB_z\right)\hat{i}+\left(A_xB_y-A_yB_x\right)\hat{k}</math>
  
Thhen show that the cross product can be written  
+
Then show that the cross product can be written  
  
 
<math>\vec{A}\times\vec{B}=\left| \begin{array}{ccc}
 
<math>\vec{A}\times\vec{B}=\left| \begin{array}{ccc}
Line 12: Line 12:
 
B_x & B_y & B_z \end{array} \right|</math>
 
B_x & B_y & B_z \end{array} \right|</math>
  
where we use the rules for evaluating a determinant.  
+
where we use the rules for evaluating a determinant.
 +
 
 
==Solution==
 
==Solution==
 
===(a)===
 
===(a)===

Latest revision as of 00:43, 18 December 2019

Problem

Show that the cross product of two vectors , and is

Then show that the cross product can be written

where we use the rules for evaluating a determinant.

Solution

(a)

(b)