Difference between revisions of "Chapter 21 Problem 67"
From 105/106 Lecture Notes by OBM
Line 14: | Line 14: | ||
[[File:Chapter21Problem67s.png|200px|center|diagram]] | [[File:Chapter21Problem67s.png|200px|center|diagram]] | ||
+ | ===(a)=== | ||
+ | <math>E_\text{net}=E_\text{+Q}+E_\text{-Q}=\frac{Q}{4\pi\epsilon_0 \left(r-\frac{1}{2}l\right)^2}+\frac{(-Q)}{4\pi\epsilon_0 \left(r+\frac{1}{2}l\right)^2}</math> | ||
+ | <math>=\frac{Q\left[\left(r+\frac{1}{2}l\right)^2-\left(r-\frac{1}{2}l\right)^2\right]}{4\pi\epsilon_0\left(r+\frac{1}{2}l\right)^2\left(r-\frac{1}{2}l\right)^2}</math> | ||
+ | <math>=\frac{Q(2rl)}{4\pi\epsilon_0\left(r+\frac{1}{2}l\right)^2\left(r-\frac{1}{2}l\right)^2}</math> | ||
+ | <math>\approx \frac{Q(2rl)}{4\pi\epsilon_0 r^4}</math> | ||
+ | <math>=\frac{2Ql}{4\pi\epsilon_0 r^3}</math> | ||
+ | <math>=\frac{2p}{4\pi\epsilon_0 r^3}</math> | ||
− | + | (The same result for the other side) | |
− | + | ||
− | + | ===(b)=== | |
− | + | The electric field points in the same direction as the electric dipole moment vector. | |
− | |||
− |
Latest revision as of 23:02, 16 February 2020
Problem
(a) Show that at points along the axis of a dipole (along the same line that contains and ), the electric field has magnitude
for , where is the distance from a point to the center of the dipole.
(b) In what direction does point?
Solution
(a)
(The same result for the other side)
(b)
The electric field points in the same direction as the electric dipole moment vector.