Difference between revisions of "Chapter 23 Problem 19"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== A nonconducting sphere of radius <math>r_0</math> carries a total charge <math>Q</math> distributed uniformly throughout its volume. Determine the electr...")
 
Line 34: Line 34:
  
 
===(c)===
 
===(c)===
<math>V_0=V(r=r_0)=</math>
+
<math>V_0=V(r=r_0)=\frac{Q}{4\pi\epsilon_0 r_0}</math>
<math></math>
+
 
<math></math>
+
<math>E_0=E(r=r_0)=\frac{Q}{4\pi\epsilon_0 r_0^2}</math>
<math></math>
+
 
<math></math>
+
for <math>r<r_0</math>:
<math></math>
+
 
<math></math>
+
<math>V/V_0=\frac{\frac{Q}{8\pi\epsilon_0 r_0}\left(3-\frac{r^2}{r_0^2}\right)}{\frac{Q}{4\pi\epsilon_0 r_0}}=\frac{1}{2}\left(3-\frac{r^2}{r_0^2}\right)</math>
<math></math>
+
 
<math></math>
+
<math>E/E_0=\frac{\frac{Qr}{4\pi\epsilon_0 r_0^3}}{\frac{Q}{4\pi\epsilon_0 r_0^2}}=\frac{r}{r_0}</math>
<math></math>
+
 
<math></math>
+
for <math>r>r_0</math>:
<math></math>
+
<math></math>
+
<math>V/V_0=\frac{\frac{Q}{4\pi\epsilon_0 r}}{\frac{Q}{4\pi\epsilon_0 r_0}}=\frac{r_0}{r}=(r/r_0)^{-1}</math>
 +
 
 +
<math>E/E_0=\frac{\frac{Q}{4\pi\epsilon_0 r^2}}{\frac{Q}{4\pi\epsilon_0 r_0^2}}=\frac{r_0^2}{r^2}=(r/r_0)^{-2}</math>
 +
 
 +
===(c)===
 +
[[File:Chapter23Problem19s.png|center|300px|plots]]
 +
 
 
<math></math>
 
<math></math>

Revision as of 22:20, 24 February 2020

Problem

A nonconducting sphere of radius carries a total charge distributed uniformly throughout its volume. Determine the electric potential as a function of the distance from the center of the sphere for

(a)

(b)

Take at .

(c)Plot versus and versus .


Solution

(a)

Spherically symmetric :

(b)

use Gauss's Law (with a spherical Gaussian surface)

use the electric field to calculate the potential

(c)

for :

for :

(c)

plots