|
|
Line 34: |
Line 34: |
| | | |
| ===(c)=== | | ===(c)=== |
− | <math>V_0=V(r=r_0)=</math> | + | <math>V_0=V(r=r_0)=\frac{Q}{4\pi\epsilon_0 r_0}</math> |
− | <math></math> | + | |
− | <math></math> | + | <math>E_0=E(r=r_0)=\frac{Q}{4\pi\epsilon_0 r_0^2}</math> |
− | <math></math> | + | |
− | <math></math> | + | for <math>r<r_0</math>: |
− | <math></math> | + | |
− | <math></math> | + | <math>V/V_0=\frac{\frac{Q}{8\pi\epsilon_0 r_0}\left(3-\frac{r^2}{r_0^2}\right)}{\frac{Q}{4\pi\epsilon_0 r_0}}=\frac{1}{2}\left(3-\frac{r^2}{r_0^2}\right)</math> |
− | <math></math> | + | |
− | <math></math>
| + | <math>E/E_0=\frac{\frac{Qr}{4\pi\epsilon_0 r_0^3}}{\frac{Q}{4\pi\epsilon_0 r_0^2}}=\frac{r}{r_0}</math> |
− | <math></math>
| + | |
− | <math></math>
| + | for <math>r>r_0</math>: |
− | <math></math>
| + | |
− | <math></math>
| + | <math>V/V_0=\frac{\frac{Q}{4\pi\epsilon_0 r}}{\frac{Q}{4\pi\epsilon_0 r_0}}=\frac{r_0}{r}=(r/r_0)^{-1}</math> |
| + | |
| + | <math>E/E_0=\frac{\frac{Q}{4\pi\epsilon_0 r^2}}{\frac{Q}{4\pi\epsilon_0 r_0^2}}=\frac{r_0^2}{r^2}=(r/r_0)^{-2}</math> |
| + | |
| + | ===(c)=== |
| + | [[File:Chapter23Problem19s.png|center|300px|plots]] |
| + | |
| <math></math> | | <math></math> |
Revision as of 22:20, 24 February 2020
Problem
A nonconducting sphere of radius carries a total charge distributed uniformly throughout its volume. Determine the electric potential as a function of the distance from the center of the sphere for
(a)
(b)
Take at .
(c)Plot versus and versus .
Solution
(a)
Spherically symmetric :
(b)
use Gauss's Law (with a spherical Gaussian surface)
use the electric field to calculate the potential
(c)
for :
for :
(c)