Chapter 26 Problem 40

From 105/106 Lecture Notes by OBM
Revision as of 23:04, 30 March 2019 by Obm (talk | contribs) (→‎(b))

Problem

Resistance is futile!

Twelve resistors, each of resistance R, are connected as the edges of a cube. Determine the equivalent resistance

(a) between points a and b, the ends of a side;

(b) between points a and c, the ends of a face diagonal;

(c) between points a and d, the ends of the volume diagonal.

[Hint: Apply an emf and determine currents; use symmetry at junctions.]

solution

(a)

The symmetry reduced cube

Insert a probe battery between points (a) and (b). Let's label the current drawn from this probe battery as I

This setup has a symmetry plane between abed, so the current split at junction a will be

Another symmetry is that the afhe plane is the mirror cdgb (since one has the current I entering, and the other has the current leaving) thus we have the same currents in erverse directions in those planes.

The 6 equations in the symmetry reduced cube is:

6 equations and 6 unknowns, so we start solving:

  1. (2 and 6 in 1)
  2. (2 and 6 in 4)
  3. (3 in 5)


( solution of 3)

(previous into 2)

(previous into 1)

(b)

The symmetry reduced cube

Insert a probe battery between points (a) and (c). Let's label the current drawn from this probe battery as I

This ehgh is a symmetry plane

(c)

The symmetry reduced cube

Insert a probe battery between points (a) and (d). Let's label the current drawn from this probe battery as I