Show that the cross product of two vectors A → = A x i ^ + A y j ^ + A z k ^ {\displaystyle {\vec {A}}=A_{x}{\hat {i}}+A_{y}{\hat {j}}+A_{z}{\hat {k}}} , and B → = B x i ^ + B y j ^ + B z k ^ {\displaystyle {\vec {B}}=B_{x}{\hat {i}}+B_{y}{\hat {j}}+B_{z}{\hat {k}}} is
A → × B → = ( A y B z − A z B y ) i ^ + ( A z B x − A x B z ) i ^ + ( A x B y − A y B x ) k ^ {\displaystyle {\vec {A}}\times {\vec {B}}=\left(A_{y}B_{z}-A_{z}B_{y}\right){\hat {i}}+\left(A_{z}B_{x}-A_{x}B_{z}\right){\hat {i}}+\left(A_{x}B_{y}-A_{y}B_{x}\right){\hat {k}}}
Then show that the cross product can be written
A → × B → = | i ^ j ^ k ^ A x A y A z B x B y B z | {\displaystyle {\vec {A}}\times {\vec {B}}=\left|{\begin{array}{ccc}{\hat {i}}&{\hat {j}}&{\hat {k}}\\A_{x}&A_{y}&A_{z}\\B_{x}&B_{y}&B_{z}\end{array}}\right|}
where we use the rules for evaluating a determinant.
A → × B → = ( A x i ^ + A y j ^ + A z k ^ ) × ( B x i ^ + B y j ^ + B z k ^ ) {\displaystyle {\vec {A}}\times {\vec {B}}=\left(A_{x}{\hat {i}}+A_{y}{\hat {j}}+A_{z}{\hat {k}}\right)\times \left(B_{x}{\hat {i}}+B_{y}{\hat {j}}+B_{z}{\hat {k}}\right)} = A x B x ( i ^ × i ^ ) + A x B y ( i ^ × j ^ ) + A x B z ( i ^ × k ^ ) {\displaystyle =A_{x}B_{x}\left({\hat {i}}\times {\hat {i}}\right)+A_{x}B_{y}\left({\hat {i}}\times {\hat {j}}\right)+A_{x}B_{z}\left({\hat {i}}\times {\hat {k}}\right)} + A y B x ( j ^ × i ^ ) + A y B y ( j ^ × j ^ ) + A y B z ( j ^ × k ^ ) {\displaystyle +A_{y}B_{x}\left({\hat {j}}\times {\hat {i}}\right)+A_{y}B_{y}\left({\hat {j}}\times {\hat {j}}\right)+A_{y}B_{z}\left({\hat {j}}\times {\hat {k}}\right)} + A z B x ( k ^ × i ^ ) + A z B y ( k ^ × j ^ ) + A z B z ( k ^ × k ^ ) {\displaystyle +A_{z}B_{x}\left({\hat {k}}\times {\hat {i}}\right)+A_{z}B_{y}\left({\hat {k}}\times {\hat {j}}\right)+A_{z}B_{z}\left({\hat {k}}\times {\hat {k}}\right)}
A → × B → = A x B x ( 0 ) + A x B y ( k ^ ) + A x B z ( − j ^ ) {\displaystyle {\vec {A}}\times {\vec {B}}=A_{x}B_{x}\left(0\right)+A_{x}B_{y}\left({\hat {k}}\right)+A_{x}B_{z}\left(-{\hat {j}}\right)} + A y B x ( − k ^ ) + A y B y ( 0 ) + A y B z ( i ^ ) {\displaystyle +A_{y}B_{x}\left(-{\hat {k}}\right)+A_{y}B_{y}\left(0\right)+A_{y}B_{z}\left({\hat {i}}\right)} + A z B x ( j ^ ) + A z B y ( − i ^ ) + A z B z ( 0 ) {\displaystyle +A_{z}B_{x}\left({\hat {j}}\right)+A_{z}B_{y}\left(-{\hat {i}}\right)+A_{z}B_{z}\left(0\right)}
= ( A y B z − A z B y ) i ^ + ( A z B x − A x B z ) i ^ + ( A x B y − A y B x ) k ^ {\displaystyle =\left(A_{y}B_{z}-A_{z}B_{y}\right){\hat {i}}+\left(A_{z}B_{x}-A_{x}B_{z}\right){\hat {i}}+\left(A_{x}B_{y}-A_{y}B_{x}\right){\hat {k}}}
A → × B → = | a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 | {\displaystyle {\vec {A}}\times {\vec {B}}=\left|{\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}}\right|} = a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 21 a 33 ) + a 13 ( a 21 a 32 − a 22 a 31 ) {\displaystyle =a_{11}\left(a_{22}a_{33}-a_{23}a_{32}\right)+a_{12}\left(a_{23}a_{31}-a_{21}a_{33}\right)+a_{13}\left(a_{21}a_{32}-a_{22}a_{31}\right)}
A → × B → = | i ^ j ^ k ^ A x A y A z B x B y B z | {\displaystyle {\vec {A}}\times {\vec {B}}=\left|{\begin{array}{ccc}{\hat {i}}&{\hat {j}}&{\hat {k}}\\A_{x}&A_{y}&A_{z}\\B_{x}&B_{y}&B_{z}\end{array}}\right|} = ( A y B z − A z B y ) i ^ + ( A z B x − A x B z ) i ^ + ( A x B y − A y B x ) k ^ {\displaystyle =\left(A_{y}B_{z}-A_{z}B_{y}\right){\hat {i}}+\left(A_{z}B_{x}-A_{x}B_{z}\right){\hat {i}}+\left(A_{x}B_{y}-A_{y}B_{x}\right){\hat {k}}}