A long uniformly charged thread (linear charge density λ = 2.5 C/m {\displaystyle \lambda =2.5{\textrm {C/m}}} ) lies along the x {\displaystyle x} axis. A small charged sphere ( Q = − 2.0 C {\displaystyle Q=-2.0{\textrm {C}}} ) is at the point x = 0 cm {\displaystyle x=0{\textrm {cm}}} , y = − 5.0 cm {\displaystyle y=-5.0{\textrm {cm}}} . What is the electric field at the point x = 7.0 cm {\displaystyle x=7.0{\textrm {cm}}} , y = 7.0 cm {\displaystyle y=7.0{\textrm {cm}}} ?
E → thread = 1 2 π ϵ 0 λ y j ^ {\displaystyle {\vec {E}}_{\textrm {thread}}={\frac {1}{2\pi \epsilon _{0}}}{\frac {\lambda }{y}}{\hat {j}}}
E → Q = 1 4 π ϵ 0 Q d 2 ( − cos θ i ^ − sin θ j ^ ) {\displaystyle {\vec {E}}_{\textrm {Q}}={\frac {1}{4\pi \epsilon _{0}}}{\frac {Q}{d^{2}}}\left(-\cos \theta {\hat {i}}-\sin \theta {\hat {j}}\right)}
E → = ( − 1 4 π ϵ 0 Q d 2 cos θ ) i ^ + ( 1 2 π ϵ 0 λ y − 1 4 π ϵ 0 Q d 2 sin θ ) j ^ {\displaystyle {\vec {E}}=\left(-{\frac {1}{4\pi \epsilon _{0}}}{\frac {Q}{d^{2}}}\cos \theta \right){\hat {i}}+\left({\frac {1}{2\pi \epsilon _{0}}}{\frac {\lambda }{y}}-{\frac {1}{4\pi \epsilon _{0}}}{\frac {Q}{d^{2}}}\sin \theta \right){\hat {j}}}
d 2 = ( 0.07 m ) 2 + ( 0.12 m ) 2 = 0.0193 m 2 {\displaystyle d^{2}=(0.07{\textrm {m}})^{2}+(0.12{\textrm {m}})^{2}=0.0193{\textrm {m}}^{2}}
θ = tan − 1 12.0 cm 7.0 cm = 59.7 ∘ {\displaystyle \theta =\tan ^{-1}{\frac {12.0{\textrm {cm}}}{7.0{\textrm {cm}}}}=59.7^{\circ }}
E x = E → i ^ ˙ = − 4.699 × 10 11 N/C {\displaystyle E_{x}={\vec {E}}{\dot {\hat {i}}}=-4.699\times 10^{11}{\textrm {N/C}}} E y = E → j ^ ˙ = − 1.622 × 10 11 N/C {\displaystyle E_{y}={\vec {E}}{\dot {\hat {j}}}=-1.622\times 10^{11}{\textrm {N/C}}}
E → = ( − 4.699 i ^ − 1.6 j ^ ) × 10 11 N/C {\displaystyle {\vec {E}}=\left(-4.699{\hat {i}}-1.6{\hat {j}}\right)\times 10^{11}{\textrm {N/C}}}
E = | E → | = E x 2 + E y 2 = 5.0 × 10 11 N/C {\displaystyle E=\left|{\vec {E}}\right|={\sqrt {E_{x}^{2}+E_{y}^{2}}}=5.0\times 10^{11}{\textrm {N/C}}}
θ E = tan − 1 − 1.622 − 4.699 = 199 ∘ {\displaystyle \theta _{E}=\tan ^{-1}{\frac {-1.622}{-4.699}}=199^{\circ }}