Chapter 5 Problem 64
From 105/106 Lecture Notes by OBM
Problem
An object of mass is constrained to move in a circle of radius . Its tangential acceleration as a function of time is given by , where and are constants. If at , determine the tangential and radial components of the force, and , acting on the object at any time .
Solution
The tangential force is simply the mass times the tangential acceleration.
To find the radial force, we need the tangential velocity, which is the anti-derivative of the tangential acceleration. We evaluate the constant of integration so that at .