Proctor's remark:		Initials			
Full Name		Student ID		Signature	

Problem 1 of 3 (30 pts) Answers without solution steps clearly shown will not be given any credit.
a) (20 pts) Consider three equally spaced and equal-intensity coherent sources of light (such as adding a third slit to the two slits). Use the phasor method to obtain the intensity as a function of the phase difference δ, separation between the coherent sources d and angular position θ

$$
\delta=\frac{2 \pi}{\lambda} d \sin \theta
$$

equal magnitudes: $E_{10}=E_{20}=E_{30}$

$$
\begin{aligned}
E_{\theta 0} & =E_{10} \cos \delta+E_{20}+E_{30} \cos \delta \\
& =E_{10}(1+2 \cos \delta) \\
\frac{I_{\theta}}{I_{0}} & =\frac{E_{\theta 0}}{E_{\delta=0}^{2}}=\frac{\left(E_{10}(1+2 \cos \delta)\right)^{2}}{\left(E_{10}(1+2 \cos 0)\right)^{2}} \\
& =\frac{(1+2 \cos \delta)^{2}}{q}
\end{aligned}
$$

$$
S=\frac{2 \pi}{\pi} d \sin \theta
$$

b) (10 pts) Determine the positions of maxima and minima.

$$
\left.\left.\begin{array}{c}
\cos \delta_{\text {max }}=1 \\
\rightarrow \delta_{\text {max }}=2 m \pi=\frac{2 \pi}{\lambda} d \sin \theta_{\text {max }} \\
\sin \theta_{\text {max }}=\frac{m \lambda}{d}, m=0,1,2, \ldots \ldots
\end{array}\right\} \begin{array}{l}
1+2 \cos \delta_{\text {min }}=0 \\
\delta_{\text {min }}=\cos ^{-1}(-1 / 2)=\left\{\begin{array}{l}
\frac{2}{3} \pi+2 m \pi=2 \pi(m+1 / 3) \\
\frac{4}{3} \pi+2 m \pi=2 \pi\left(m+\frac{2}{3}\right)
\end{array}\right. \\
\delta_{\min }=2 \pi\left(m+\frac{1}{3} k\right)=\frac{2 \pi}{\lambda} d \sin \theta_{\min } \quad k=1,2 \\
m=0,1,2, \ldots
\end{array}\right\} \begin{aligned}
& \sin \theta_{\min }=\lambda / d\left(m+\frac{1}{3} k\right) \quad k=1,2 \\
& m=0,1,2, \ldots
\end{aligned}
$$

Phys 213 First Midterm Examination $12 / 11 / 2022$ 16:00-18:00
Problem 2 of 3 (30 pts) Answers without solution steps clearly shown will not be given any credit.
Monochromatic light falls on a transmission diffraction grating at an angle ϕ to the normal. Show that

$$
\sin \theta=\frac{m \lambda}{d} \quad m=0,1,2, \ldots
$$

for diffraction maxima must be replaced by

Full			
Name		Student ID	

Problem 3 of 3 (40 pts) Answers without solution steps clearly shown will not be given any credit.

In the Compton effect, a γ-ray photon of wavelength λ strikes a free, but initially stationary, electron of mass m. The photon is scattered an angle θ and its scattered wavelength is $\widetilde{\lambda}$. The electron recoils at an angle φ

$$
\begin{aligned}
\mathcal{E} & =\sqrt{p^{2} c^{2}+m^{2} c^{4}} \\
\mathcal{E}_{\text {photon }} & =p c \\
\mathcal{E}_{\text {rest }} & =m c^{2}
\end{aligned}
$$

a) (20 pts) Write the relativistic equations for momentum and energy conservation (using $\vec{p}, \widetilde{\vec{p}}, \mathcal{E}, \widetilde{\mathcal{E}}$ are the momenta and energies of the photon before and after the scattering, $\vec{p}_{e}, \widetilde{p}_{e}, \mathcal{E}_{e}, \widetilde{\mathcal{E}}_{e}$, are the momenta and energies of the electron before and after the scattering)

$$
\begin{aligned}
& \text { momentum conservation energy conservation } \\
& \qquad \stackrel{\rightharpoonup}{p}=\widetilde{\vec{p}}+\widetilde{\vec{p}} e \\
& \text { for electron }
\end{aligned}
$$

$$
\vec{p}-\widetilde{\vec{p}}=\widetilde{\vec{p}}_{e}
$$

$$
p c+m c^{2}=\tilde{p} c+\sqrt{\tilde{P_{e}}{ }^{2} c^{2}+m^{2} c^{4}}
$$

b) (20 pts) Find an expression for the change $\lambda-\widetilde{\lambda}$ in the photon wavelength for the special case $\theta=\pi / 2$ (use $p=h / \lambda)$

$$
\begin{aligned}
& \text { (1) }{\underset{\vec{P}}{c}}^{2}=(\vec{p}-\widetilde{\vec{p}})^{2} \text { (from momentum conservation) } \\
& \left(p c+m c^{2}-\tilde{p} c\right)^{2}=\tilde{p}_{c}^{2} c^{2}+m^{2} c^{4} \text { (prom energy conservation) } \\
& \mu^{2}((p-\tilde{p})+m c)^{2}+\mu^{x} m c^{2}=\tilde{p}_{e} c^{2} \\
& \text { (2) } \tilde{p}_{e}^{2}=(p-\tilde{p})^{2}+2 m c(p-\widetilde{p}) \\
& \text { (1) } \rightarrow \quad \tilde{p}_{c}^{2}=\widetilde{\vec{p}}_{c}^{2}=\vec{p} \cdot \vec{p}+\widetilde{\vec{p}} \cdot \widetilde{\vec{p}}-?_{\cdot} \stackrel{\rightharpoonup}{p} \cdot \stackrel{\rightharpoonup}{p}=p p+\widetilde{p} \tilde{p}-2 p \tilde{p} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& p \tilde{p}(1-\cos \theta)=m c(p \sim \tilde{p}) \quad h / \tilde{\lambda} \\
& \theta=\pi / 2 \quad \cos \theta=0 \\
& \frac{p \tilde{p}}{p \tilde{p}}=\frac{m c(p-\tilde{p})}{p \tilde{p}} \rightarrow 1=m c\left(\frac{1}{\tilde{p}}\left(-\frac{1}{p}\right)^{h / \lambda}\right. \\
& \bar{\lambda}-\lambda=\frac{h}{m c}
\end{aligned}
$$

