Phys 213 Final Examination 10/01/2023 17:00-19:00

Proctor's remark:		Initials			
Full Name		Student ID		Signature	

Problem 1 of 4 (20 pts) Answers without solution steps clearly shown will not be given any credit.
The specific heat of water is c_{w} and its density is ρ_{w}. You have V_{H} volume of hot water at T_{H} and you are using a cold lake of volume V_{C} temperature T_{C} as sink. Calculate the maximum useful work that can be extracted using the concept of entropy $d S=d Q / T$. Note that the change in the temperature of T_{H} is not small.
a) (5 pts) Consider you use a heat transfer process to bring the temperature of the hot water and the lake from an arbitrary initial low temperature T_{i} to T_{H} and T_{i} to T_{C} using quasistatic processes separately. Use the concept of specific heat, $d Q=M c d T$, to calculate the total entropy change in

$$
\Delta S_{\substack{\text { hot } \\ \text { water }}}=\int_{T_{i}}^{T_{H}} \frac{d Q}{T}=\rho_{\omega} V_{H} C_{\omega} \int_{T_{i}}^{T_{H}} \frac{d T}{T}=\int_{\omega} V_{H} C_{\omega} \ln \frac{T_{H}}{T_{i}} \quad \Delta S_{\text {lake }}=\rho_{\omega} V_{c} C_{\omega} \ln \frac{T_{c}}{T_{l}}
$$

b) (5 pts) Now consider you use a heat transfer process to bring the temperature of the lake+hot

$$
\begin{aligned}
& \Delta S_{\substack{\text { lake } \\
\text { att } \\
\text { hot }}}=\int_{T_{l}}^{T_{c}+\delta} \frac{d Q}{T}=\operatorname{low}_{w} \rho_{w}\left(V_{c}+V_{H}\right) \int_{T_{C}}^{T_{c}+\delta} \frac{d T}{T}=\rho_{w}\left(V_{c}+V_{H}\right) \ln \frac{T_{c}+T}{T_{i}} c_{w} \\
& \Delta S=\Delta S_{L} .
\end{aligned}
$$

$$
\Delta S=\Delta S_{\text {hot water+lake }}=C_{w} \rho_{w}\left(V_{c}+V_{H}\right) \ln \frac{T_{c}+\delta}{T_{i}}
$$

c) (5 pts) Calculate δ if the conditions for extracting maximum useful work is satisfied in the change of entropy. (tip: $\left(M_{H}+M_{C}\right) c_{w} \ln \left(T_{C}+\delta\right) \approx\left(M_{H}+M_{C}\right) c_{w} \ln T_{C}+\frac{\left(M_{H}+M_{C}\right) c_{w} \delta}{T_{C}}$ where M_{H} is the mass of the hot water and M_{C} is the mass of the lake)
Maximum useful work \rightarrow reversible process \rightarrow entropy is the same for a) and b)
(nothing is bs to

$\left(X_{C}+V_{H}\right) \ln T_{C}+\frac{\left(V_{C}+V_{H}\right)}{T_{e}} \delta=V_{H} \ln T_{H}+V_{C} \ln T_{C}$

$$
\delta=\frac{T_{c}}{V_{c}+V_{H}}\left(V_{H} \ln T_{H}-V_{H} \ln T_{c}\right)
$$

$$
\delta=\frac{V_{H} \cdot T_{C} \ln \frac{T_{H}}{T_{C}}}{V_{1+V_{H}}}
$$

d) (5 pts) Use the first law of thermodynamics ($\Delta E=Q-W$) to calculate the maximum useful work that can be extracted.

$$
\begin{aligned}
& Q_{H}=W+Q_{L} \quad D E=O \text { (reversible) } \\
& W=\rho_{\omega} V_{H} C_{\omega} T_{H}+\rho_{\omega} V_{C} C_{\omega} T_{C}-\left(V_{H}+V_{C}\right) f_{\omega} C_{\omega}\left(T_{C}+\delta\right) \\
& =\int_{\omega} C_{\omega}\left(V_{H} T_{H}+Y_{C} T_{C}-V_{H} T_{C}-V_{C} T_{C}-\frac{\left(V_{H}+V_{C}\right) V_{H}}{\left(V_{C}+V_{C}\right)} T_{C} \ln \frac{T_{H}}{T_{C}}\right) \\
& =\int_{\omega} C_{\omega} V_{H}\left(T_{H-1}-T_{C}-T_{C} \ln \frac{T_{H}}{T_{C}}\right) \quad f_{\omega} C_{\omega} V_{H}\left(T_{H}-T_{C}-T_{C} \ln T_{H}\right.
\end{aligned}
$$

Problem 2 of 4 (20 pts) Answers without solution steps clearly shown will not be given any credit.
a) (10 pts) Consider two successive Lorentz transformations of the three frames of reference K_{0}, K_{1}, K_{2}. K_{1} moves parallel to the x axis of K_{0} with velocity v, and K_{2} moves parallel to the x axis of K_{1} with speed v. Given an object moving in the x direction with speed v_{2} in K_{2}, derive the formula for the transformation of its velocity from K_{2} to K_{0} in terms of $\beta_{0}=v_{0} / c, \beta_{2}=v_{2} / c$ and $\beta=v / c$.
$V_{1}=\frac{V_{2}+V^{2}}{1+V_{2} v_{c}^{2}}+\beta_{1}=\frac{\beta_{2}+\beta}{1+\beta_{2} \beta}$ also $\beta_{0}=\frac{\beta_{1}+\beta}{1+\beta_{1} \beta}=\frac{\frac{\beta_{2}+\beta}{1+\beta_{2} \beta}+\beta}{1+\frac{\beta_{2}+\beta}{1+\beta_{2} \beta} \beta}$ $=\frac{\beta_{2}+\beta+\beta+\beta_{2} \beta^{2}}{1+\beta_{2} \beta+\beta_{2} \beta+\beta^{2}}=\frac{\beta_{2}\left(1+\beta^{2}\right)+2 \beta}{2 \beta_{2} \beta+\left(1+\beta^{2}\right)}$

$$
\beta_{0}=\frac{\beta_{2}+2 \beta^{2} /\left(1+\beta^{2}\right)}{1+2 \beta_{2} \beta /\left(1+\beta^{2}\right)}
$$

b) (10 pts) Now generalize a) to $n+1$ frames moving with the same speed v along x relative to one another. Derive the formula for a Lorentz transformation from K_{n} to K_{0} if the speed of the object in K_{n} is also v using the concept of "rapidity" ($\beta_{i}=\tanh w_{i}$) and the relationship $\tanh \left(w_{1}+w_{2}\right)=\frac{\tanh w_{1}+\tanh w_{2}}{1+\tanh w_{1} \tanh w_{2}}$
Br_{L} to $\mathrm{\beta}_{0} \rightarrow$

$$
\begin{aligned}
& \beta_{1}=\frac{\beta_{2}+\beta}{1+\beta_{2} \beta}=\frac{\tanh \omega_{2}+\tanh \omega}{1+\tanh \omega_{2} \tanh \omega}=\tanh \left(\omega_{2}+\omega\right)=\tanh \left(\omega_{1}\right) \\
& \beta_{0}=\frac{\tanh \omega_{1}+\tanh \omega}{1+\tanh \omega_{1} \tanh \omega}=\tanh \left(\omega_{1}+\omega\right)=\tanh (\underbrace{\omega_{2}}_{(n+1) \omega}+\omega+\omega)
\end{aligned}
$$

generalise $\rightarrow \beta_{0}=\tanh \left(\omega_{n}+\omega_{n-1}+\cdots+\omega_{1}+\omega\right)=\tanh \left[(n+1) \tanh ^{-1} \beta\right]$

$$
\beta_{0}=\tanh \left[(n+1) \tanh ^{-1} \beta\right]
$$

Phys 213 Final Examination 10/01/2023 17:00-19:00

Full			
Name		Student ID	

Problem 3 of 4 (30 pts) Answers without solution steps clearly shown will not be given any credit.
a) (10 pts) Write down the time independent Schrödinger equation for simple harmonic oscillator where a restoring force $F=-C x$ acts on an object with mass m resulting in a potential of $U(x)=\frac{1}{2} C x^{2}$.

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{1}{2} C x^{2} \psi=E \psi
$$

b) (20 pts) Use the solution to the above equation $\psi_{n}=\frac{1}{\sqrt{2^{n} n!}} \frac{m \omega}{\pi \hbar} e^{-B x^{2}} H_{n}(\sqrt{2 B} x)$ where H_{n} are the physicists' Hermite polynomials $H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)$ and $\omega=\sqrt{C / m}$ to calculate the ground state energy ($\mathrm{n}=0$) in terms of ω (tip: what should be B to satisfy the Schrödinger equation?). What is the difference between the ground state of quantum harmonic

$$
\begin{aligned}
& \text { oscillator and the classical harmonic oscillator? } \\
& H_{0}=(-1)^{0} e^{z^{2}} e^{-z^{2}}=1 \quad \frac{d^{2} \psi_{0}}{\partial x^{2}}=2\left(2 B x^{2}-1\right) A B e^{-B x^{2}} \\
& \begin{array}{l}
\omega_{0}=\frac{1}{\sqrt{2}} \frac{m \omega}{\pi \hbar} e^{-B x^{2}} d x^{2} \\
\quad-\frac{\hbar^{2}}{2 m}\left[2\left(2 B x^{2}-1\right) \not A B e^{-B x^{2}}\right]+\frac{1}{2} C x^{2} \not A e^{-B x^{2}}=E A e^{-B x^{2}}
\end{array} \\
& \left(\frac{\hbar^{2} B}{m}-E_{0}\right)+\left(\frac{1}{2} C-\frac{2 \hbar^{2} B^{2}}{m}\right) x^{2}=0 \\
& E_{0}=\frac{\hbar^{2} B}{m} \quad \frac{1}{2} C=\frac{2 \hbar^{2} B^{2}}{m} \rightarrow B=\frac{\sqrt{m L}}{2 \hbar}=\frac{m}{2 \hbar} \sqrt{\frac{c}{m}}=\frac{\omega m}{2 \hbar} \\
& E_{0}=\frac{\hbar^{2}}{m} \frac{\sqrt{m c}}{2 \hbar}=\frac{1}{2} \hbar \sqrt{\frac{c}{m}}=\frac{1}{2} \hbar \omega
\end{aligned}
$$

Classical harmonic oscillator has minimum energy 0

$$
\begin{aligned}
E_{0} & =\frac{1}{2} \hbar \omega \\
E_{0}-E_{\text {classical }} & =\frac{1}{2} \hbar \omega
\end{aligned}
$$

Problem 4 of 4 (30 pts) Answers without solution steps clearly shown will not be given any credit.
A particle of mass m is contained in a one-dimensional impenetrable box extending from $x=-L / 2$ to $x=+L / 2$. The particle is in its ground state.
a) (10 pts) Find the eigenfunction of the ground state and the first excited state (notice x is not starting at 0)

$$
\begin{aligned}
& \psi(x)=A \sin k x+B \cos k x \\
& \psi\left(-\frac{L}{2}\right)=0 \rightarrow A \sin \left(-\frac{k L}{2}\right)+B \cos \left(-\frac{l l}{2}\right)=0 \\
& \begin{array}{l}
\left.\psi_{0}=A \sin \left(\frac{\pi}{2} x\right)+B \cos \frac{\pi}{2} x\right) \\
\psi_{0}(t / 2): 0 \rightarrow A=0(\sin x \sin \pi / 2 \neq 0)
\end{array} \\
& \psi_{1}=A \sin \left(\frac{3 \pi}{L} x\right)+B \cos \left(\frac{2 \pi}{L} x\right) \\
& +\psi\left(\frac{l}{2}\right)=0 \rightarrow A \sin \left(\frac{k l}{2}\right)+B \cos \left(\frac{k l}{2}\right)=0 \\
& \psi_{1}\left(e_{2}\right)=0 \rightarrow B=0(\text { since } \cos \pi \neq 0) \\
& \psi_{0}=\sqrt{\frac{2}{L}} \cos \frac{\pi x}{L} \\
& \psi_{1}=\sqrt{\frac{2}{L}} \sin \frac{2 \pi x}{L}
\end{aligned}
$$

b) (10 pts) The walls of the box are moved outward instantaneously to form a box extending from $x=-L$ to $x=+L$. Calculate the probability that the particle will stay in the ground state during this sudden expansion. (tip: the probability of transition from wavefunctions can be calculated as

$$
\begin{aligned}
&\left.P_{0 j}=\left|I_{0 j}\right|^{2} \text { where } I_{0 j}=\int_{a}^{b} \psi_{j}^{\prime}(x) \psi_{0}(x) d x\right) \\
& I_{00}=\frac{\sqrt{2}}{L} \int_{0}^{\prime}(x)=\frac{1}{\sqrt{L}} \cos \frac{\pi x}{2 L} \quad \Psi_{1}^{L / 2}(x)=\frac{1}{\sqrt{L}} \sin \frac{\pi x}{L} \\
&=\frac{1}{\sqrt{2}} \not \subset \cos \frac{\pi x}{2 L} \cos \frac{\pi x}{L}\left(\sin \frac{\pi}{2 \psi^{2}} \frac{1}{\sqrt{2} L}+\frac{1}{3} \sin \frac{3 \pi x}{2 L^{2}} \int_{-L / 2}^{L} d x\left(\cos \frac{\pi x}{2 L}+\cos \frac{3 \pi x}{2 L}\right)\right. \\
& \frac{9}{3 \pi}\left(\sin \pi / 4+\sin \frac{3 \pi}{4}\right)=\frac{8}{3 \pi} \\
& P_{00}=(8 / 3 \pi)^{2}
\end{aligned}
$$

c) (10 pts) Calculate the probability that the particle jumps from the initial ground state to the first excited final state.

$$
I_{a l}=\frac{\sqrt{2}}{L} \int_{-L_{2}}^{L / 2} d x \sin \frac{\pi x}{L} \cos \frac{1+1 x}{L}=0(\operatorname{can}(t) x)
$$

$$
P_{01}=\square
$$

