Phys 213 Make-up Examination 11/01/2023 17:00-19:00

Proctor's remark:		Initials			
Full Name	Student ID		Signature		

Problem 1 of 4 (20 pts) Answers without solution steps clearly shown will not be given any credit.
An ideal gas of total mass m and molecular weight μ is isochorically (at constant volume) cooled to a pressure n times smaller than the initial pressure P_{1}. The gas is then expanded at constant pressure so that in the final state the temperature T_{2} coincides with the initial temperature T_{1}.
a) (10 pts) Draw PV diagram of this process. Identify the section responsible for the work done.

$$
W=\int P d V
$$

only possible in $2 \rightarrow 3$
b) (10 pts) Calculate the work done by the gas.

$$
\begin{aligned}
W_{2-3} & =\int_{2}^{3} P d V=P_{2}\left(V_{2}-V_{1}\right)=P_{2} V_{2}\left(1-\frac{V_{1}}{V_{2}}\right) \\
P_{1} V_{1} & =\frac{m}{\mu} R T_{1} \quad P_{2} V_{2}=\frac{m}{\mu} R T_{2}=\frac{m}{\mu} R T_{1}
\end{aligned}
$$

Since initial and final temperatures are the same

$$
W=\frac{m}{\mu} R T\left(1-\frac{1}{n}\right)
$$

Problem 2 of 4 (20 pts) Answers without solution steps clearly shown will not be given any credit.
In the Compton effect, a γ-ray photon of wavelength λ strikes a free, but initially stationary, electron of mass m. The photon is scattered an angle θ and its scattered wavelength is $\widetilde{\lambda}$. The electron recoils at an angle φ

$$
\begin{aligned}
\mathcal{E} & =\sqrt{p^{2} c^{2}+m^{2} c^{4}} \\
\mathcal{E}_{\text {photon }} & =p c \\
\mathcal{E}_{\text {rest }} & =m c^{2}
\end{aligned}
$$

a) (10 pts) Write the relativistic equations for momentum and energy conservation (using $\vec{p}, \widetilde{\vec{p}}, \mathcal{E}, \widetilde{\mathcal{E}}$ are the momenta and energies of the photon before and after the scattering, $\vec{p}_{e}, \widetilde{\vec{p}}_{e}, \mathcal{E}_{e}, \widetilde{\mathcal{E}}_{e}$, are the momenta and energies of the electron before and after the scattering)

$$
\begin{aligned}
& \vec{p}_{e}=0 \\
& \varepsilon+\varepsilon_{e}=\tilde{\varepsilon}+\tilde{\varepsilon}_{e} \\
& \varepsilon_{e}=m c^{2} \sim \tilde{\varepsilon}_{e}=\sqrt{\tilde{p}_{e} c^{2}+m^{2} c^{4}} \\
& \varepsilon=p c=\widetilde{p} c \\
& \text { Momentum: } \quad \vec{p}-\vec{p}=\vec{P}_{e} \\
& \text { Energy: }
\end{aligned}
$$

b) (10 pts) Find an expression for the change $\widetilde{\lambda}-\lambda$ in the photon wavelength for the special case $\theta=\pi / 2$ (use $p=h / \lambda)$

$$
\begin{aligned}
& \text { (1) } \widetilde{\vec{P}}_{c}^{2}=(\vec{p}-\widetilde{\vec{p}})^{2} \text { (from momentum conservation) } \\
& \left(p c+m c^{2}-\tilde{p} c\right)^{2}=\tilde{p}_{e}^{2} c^{2}+m^{2} c^{4} \text { (prom energy conservation) } \\
& \mu^{2}((p-\tilde{p})+m c)^{2}+\varphi^{2} m c^{2}=\tilde{p}_{e} c^{\chi} \\
& \text { (2) } \tilde{P}_{e}^{2}=(p-\tilde{p})^{2}+2 m c(p-\tilde{p}) \\
& \text { (1) } \rightarrow \quad \tilde{p}_{c}^{2}=\widetilde{\vec{p}}_{c}^{2}=\vec{p} \cdot \vec{p}+\widetilde{\vec{p}} \cdot \tilde{\vec{p}}-2 \cdot \vec{p} \cdot \widetilde{\vec{p}}=p p+\tilde{p} \tilde{p}-2 p \tilde{p} \cos \theta \\
& \text { use } \Theta \rightarrow p p+\tilde{p} p \tilde{p}-\chi_{p} \tilde{p}+\chi_{m c}(p-\tilde{p})=p p+\tilde{p} \not p^{\chi}-\not \lambda_{p} \tilde{p} \cos \theta \\
& \theta=\pi / 2 \quad \cos \theta=0 \\
& p \tilde{p}(1-\cos \theta)=m c(p-\tilde{p}) \\
& h / \tilde{\lambda} \\
& \frac{p \tilde{p}}{\sim}=\frac{m c(p-\tilde{p})}{p \tilde{p}} \rightarrow 1=m c\left(\frac{1}{\tilde{p}}-\frac{1}{p}\right)^{h / \lambda} \tilde{\lambda}-\lambda=\text { h/mc }
\end{aligned}
$$

Phys 213 Make-up Examination 11/01/2023 17:00-19:00

| Full |
| :---: | :--- | :---: | :--- |
| Name |\quad| Student |
| :---: |
| ID |

Problem 3 of 4 (30 pts) Answers without solution steps clearly shown will not be given any credit.
An electron is confined to one dimension to the right half-space $x>0$ outside a perfect conductor. a) (10 pts) The image potential of an electron outside a perfect conductor is $U(x)=-\frac{e^{2}}{4 x}$. Write down the time independent Schrödinger equation for this electron.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} T(x)}{d x^{2}}-\frac{e^{2}}{4 x} \psi(x)=E \psi(x)
$$

b) (20 pts) Using $\psi=N x e^{-\alpha x}$, Find the ground state energy and the normalization constant N \int_{0}^{∞}

$$
\begin{aligned}
& x^{2} e^{-2 \alpha x} d x=\frac{1}{4 \alpha^{3}} \text {. } \\
& \frac{\delta^{2} \psi(x)}{\partial x^{2}}=N \frac{d}{\alpha x}\left(e^{-\alpha x}-\alpha x e^{-\alpha x}\right)=N\left(-\alpha e^{-\alpha x}-\alpha e^{-\alpha x}+\alpha^{2} x e^{-\alpha x}\right) \\
& =N \alpha(\alpha x-2) e^{-\alpha x} \\
& \frac{\hbar^{2}}{2 m} A d_{\alpha}(2-\alpha x) e_{0}^{-\alpha x}-\frac{e^{2}}{\alpha x} \alpha \alpha \times e^{-\alpha x}=E N x e^{-\alpha x} \\
& \left(\frac{\hbar^{2} \alpha}{m}-\frac{l^{2}}{4}\right)+\sqrt{\left(-\frac{\hbar^{2} \alpha^{2}}{2 m}-E\right)} x=0 \\
& \alpha=\frac{e^{2} m}{4 \hbar^{2}} \quad E=\frac{-\hbar^{2} \alpha^{2}}{2 m}=-\frac{e^{4} m}{32 \hbar^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& I=N^{2} \int_{0}^{\infty} \partial x x^{2} e^{-2 \alpha x}=\frac{N^{2}}{4 \alpha^{3}} \\
& N=\sqrt{4 \alpha^{3}}
\end{aligned}
$$

$$
\begin{aligned}
E_{0} & =-\frac{e^{4} m}{32 \hbar^{2}} \\
N & =\sqrt{4 \alpha^{3}}
\end{aligned}
$$

Problem 4 of 4 (30 pts) Answers without solution steps clearly shown will not be given any credit.
Two electrons are confined in one dimension to a infinite potential box starting from $x=0$ to $x=a$. A clever experimentalist has arranged that both electrons have the same spin state. Ignore the Coulomb interaction between electrons.
a) (15 pts) Find the orbital part of the ground state wave function for the two-electron system by identifying $A, b, c, \psi_{1}, \psi_{2}$ in $\psi\left(x_{1}, x_{2}\right)=A\left[\alpha \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\not b \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$ where $\psi(x)$ are normalized "particle in a box" solutions for each electron individually and considering the fact that the overall electronic wavefunction must be antisymmetric in an exchange operation $\psi\left(x_{1}, x_{2}\right)=-\psi\left(x_{2}, x_{1}\right)$ (since they are fermions).

$$
\psi(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}
$$

$$
\begin{gathered}
A\left[b \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+c \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]=-A\left[b \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)+c \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)\right. \\
b=-c \text { set } b=1 \text { (since A will normalize) } \\
\text { so satisfy this so }
\end{gathered}
$$

for ground stale

$$
\begin{aligned}
& b=-c \text { set } b=1 \text { (since A will normalice) } \\
& \text { notice } \psi_{1} \text { can not be equal to } \psi_{2} \text { to satisfy this so }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for ground stale } \\
& \psi_{0}\left(x_{1}, x_{2}\right)=A\left[\frac{2}{a} \sin \frac{\pi x_{1}}{a} \sin \frac{2 \pi x_{2}}{a}-\frac{2}{a} \sin \frac{\pi x_{2}}{a} \sin \frac{2 \pi x_{1}}{a}\right)
\end{aligned}
$$

$A^{2}(1+1+0+0)=1$

$$
A=\frac{1}{\sqrt{2}}
$$

$$
\psi_{0}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\frac{2}{a} \sin \frac{\pi x_{1}}{a} \sin \frac{2 \pi x_{2}}{a}-\frac{2}{a} \sin \frac{\pi x_{2}}{a} \sin \frac{2 \pi x_{1}}{a}\right)
$$

b) (15 pts) Calculate the probability that both electrons are on the left side ($0<x<a / 2$) of the box. $P_{\mathrm{LL}}=\int_{0}^{a / 2} d x_{1} \int_{0}^{a / 2} d x_{2}\left|\psi_{0}\left(x_{1}, x_{2}\right)\right|^{2}$

$$
\begin{aligned}
& P_{L L}=\int_{0}^{a / 2} d x_{1} \int_{0}^{a / 2} d x_{2}\left[\psi_{1}^{2}\left(x_{1}\right) \psi_{2}^{2}\left(x_{2}\right)-\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right] \\
&=I_{1} I_{2}-I_{12} \\
& I_{1}=\frac{2}{a} \int_{0}^{a / 2} d x \sin ^{2} \frac{\pi x}{a}=1 / 2 \\
& I_{2}=\frac{2}{a} \int_{0}^{a / 2} d x \sin ^{2} \frac{2 \pi x}{a}=1 / 2 \\
& I_{12}=\frac{2}{a} \int_{0}^{a / 2} d x \sin \frac{\pi x}{a} \sin \frac{2 \pi x}{a}=\frac{4}{a} \int_{0}^{a / 2} d x \sin ^{2} \frac{\pi x}{a} \cos \frac{\pi x}{a} \\
&=\left.\frac{4}{3 \pi} \sin ^{3} \frac{\pi x}{a}\right|_{0} ^{a / 2}=\frac{a}{3 \pi} \\
& P_{L C}=\left(\frac{1}{2}\right)^{2}-\left(\frac{4}{3 \pi}\right)^{2} \\
& P_{L L}=\frac{1}{4}-\left(\frac{4}{3 \pi}\right)^{2}
\end{aligned}
$$

