A wire, in a plane, has two arcs of a circle connected by radial lengths of wire. Determine B → {\displaystyle {\vec {B}}} at point C {\displaystyle C} in terms of R 1 {\displaystyle R_{1}} , R 2 {\displaystyle R_{2}} , θ {\displaystyle \theta } , and the current I {\displaystyle I}
Since the point C is along the line of the two straight segments of the current, these segments do not contribute to the magnetic field at C.
B → = μ 0 I 4 π ∫ 0 R 1 θ d l → × r ^ R 1 2 + μ 0 I 4 π ∫ R 2 θ 0 d l → × r ^ R 2 2 {\displaystyle {\vec {B}}={\frac {\mu _{0}I}{4\pi }}\int _{0}^{R_{1}\theta }{\frac {d{\vec {l}}\times {\hat {r}}}{R_{1}^{2}}}+{\frac {\mu _{0}I}{4\pi }}\int _{R_{2}\theta }^{0}{\frac {d{\vec {l}}\times {\hat {r}}}{R_{2}^{2}}}} = μ 0 I 4 π R 1 2 k ^ ∫ 0 R 1 θ d s + μ 0 I 4 π R 2 2 k ^ ∫ R 2 θ 0 d s {\displaystyle ={\frac {\mu _{0}I}{4\pi R_{1}^{2}}}{\hat {k}}\int _{0}^{R_{1}\theta }ds+{\frac {\mu _{0}I}{4\pi R_{2}^{2}}}{\hat {k}}\int _{R_{2}\theta }^{0}ds} = μ 0 I θ 4 π R 1 k ^ + μ 0 I θ 4 π R 2 k ^ {\displaystyle ={\frac {\mu _{0}I\theta }{4\pi R_{1}}}{\hat {k}}+{\frac {\mu _{0}I\theta }{4\pi R_{2}}}{\hat {k}}}
= μ 0 I θ 4 π ( R 2 − R 1 R 1 R 2 ) k ^ {\displaystyle ={\frac {\mu _{0}I\theta }{4\pi }}\left({\frac {R_{2}-R_{1}}{R_{1}R_{2}}}\right){\hat {k}}}