A thin metal rod of length l {\displaystyle l} rotates with angular velocity ω {\displaystyle \omega } about an axis through one end. The rotation axis is perpendicular to the rod and is parallel to a uniform magnetic field B → {\displaystyle {\vec {B}}} . Determine the emf developed between the ends of the rod
d E = B v d r = B ω r d r {\displaystyle d{\mathcal {E}}=Bvdr=B\omega rdr}
E = ∫ d E = ∫ 0 l B ω r d r = 1 2 B ω l 2 {\displaystyle {\mathcal {E}}=\int d{\mathcal {E}}=\int _{0}^{l}B\omega rdr={\frac {1}{2}}B\omega l^{2}}