Let V → 1 = − 6.0 i ^ + 8.0 j ^ {\displaystyle {\vec {V}}_{1}=-6.0{\hat {i}}+8.0{\hat {j}}} and V → 2 = 4.5 i ^ − 5.0 j ^ {\displaystyle {\vec {V}}_{2}=4.5{\hat {i}}-5.0{\hat {j}}} . Determine the magnitude and direction of
(a) V → 1 {\displaystyle {\vec {V}}_{1}}
(b) V → 2 {\displaystyle {\vec {V}}_{2}}
(c) V → 1 + V → 2 {\displaystyle {\vec {V}}_{1}+{\vec {V}}_{2}}
(d) V → 2 − V → 1 {\displaystyle {\vec {V}}_{2}-{\vec {V}}_{1}}
V → 1 = − 6.0 i ^ + 8.0 j ^ {\displaystyle {\vec {V}}_{1}=-6.0{\hat {i}}+8.0{\hat {j}}}
V 1 = ( − 6.0 ) 2 + ( 8.0 ) 2 = 10 {\displaystyle V_{1}={\sqrt {(-6.0)^{2}+(8.0)^{2}}}=10}
θ = tan − 1 8.0 − 6.0 = 127 ∘ {\displaystyle \theta =\tan ^{-1}{\frac {8.0}{-6.0}}=127^{\circ }}
V → 2 = 4.5 i ^ − 5.0 j ^ {\displaystyle {\vec {V}}_{2}=4.5{\hat {i}}-5.0{\hat {j}}}
V 2 = ( 4.5 ) 2 + ( − 5.0 ) 2 = 6.7 {\displaystyle V_{2}={\sqrt {(4.5)^{2}+(-5.0)^{2}}}=6.7}
θ = tan − 1 − 5.0 4.5 = 312 ∘ {\displaystyle \theta =\tan ^{-1}{\frac {-5.0}{4.5}}=312^{\circ }}
V → 1 + V → 2 = ( − 6.0 i ^ + 8.0 j ^ ) + ( 4.5 i ^ − 5.0 j ^ ) = − 1.5 i ^ + 3.0 j ^ {\displaystyle {\vec {V}}_{1}+{\vec {V}}_{2}=(-6.0{\hat {i}}+8.0{\hat {j}})+(4.5{\hat {i}}-5.0{\hat {j}})=-1.5{\hat {i}}+3.0{\hat {j}}}
| V → 1 + V → 2 | = ( − 1.5 ) 2 + ( 3.0 ) 2 = 3.4 {\displaystyle \left|{\vec {V}}_{1}+{\vec {V}}_{2}\right|={\sqrt {(-1.5)^{2}+(3.0)^{2}}}=3.4}
θ = tan − 1 3.0 − 1.5 = 117 ∘ {\displaystyle \theta =\tan ^{-1}{\frac {3.0}{-1.5}}=117^{\circ }}
V → 2 − V → 1 = ( 4.5 i ^ − 5.0 j ^ ) − ( − 6.0 i ^ + 8.0 j ^ ) = 10.5 i ^ − 13.0 j ^ {\displaystyle {\vec {V}}_{2}-{\vec {V}}_{1}=(4.5{\hat {i}}-5.0{\hat {j}})-(-6.0{\hat {i}}+8.0{\hat {j}})=10.5{\hat {i}}-13.0{\hat {j}}}
| V → 2 − V → 1 | = ( 10.5 ) 2 + ( − 13.0 ) 2 = 16.7 {\displaystyle \left|{\vec {V}}_{2}-{\vec {V}}_{1}\right|={\sqrt {(10.5)^{2}+(-13.0)^{2}}}=16.7}
θ = tan − 1 − 13.0 10.5 = 309 ∘ {\displaystyle \theta =\tan ^{-1}{\frac {-13.0}{10.5}}=309^{\circ }}