Difference between revisions of "Chapter 3 Problem 8"

From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== Let <math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math> and <math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math>. Determine the magnitude and direction of (a) <ma...")
 
 
Line 15: Line 15:
 
===(a)===
 
===(a)===
 
<math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math>
 
<math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math>
 +
 
<math>V_1 =\sqrt{(-6.0)^2+(8.0)^2}=10</math>
 
<math>V_1 =\sqrt{(-6.0)^2+(8.0)^2}=10</math>
 +
 
<math>\theta=\tan^{-1}\frac{8.0}{-6.0}=127^\circ</math>
 
<math>\theta=\tan^{-1}\frac{8.0}{-6.0}=127^\circ</math>
 
===(b)===
 
===(b)===
 
<math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math>
 
<math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math>
 +
 
<math>V_2 =\sqrt{(4.5)^2+(-5.0)^2}=6.7</math>
 
<math>V_2 =\sqrt{(4.5)^2+(-5.0)^2}=6.7</math>
 +
 
<math>\theta=\tan^{-1}\frac{-5.0}{4.5}=312^\circ</math>
 
<math>\theta=\tan^{-1}\frac{-5.0}{4.5}=312^\circ</math>
 
===(c)===
 
===(c)===
 
<math>\vec{V}_1+\vec{V}_2 =(-6.0\hat{i}+8.0\hat{j})+(4.5\hat{i}-5.0\hat{j})=-1.5\hat{i}+3.0\hat{j}</math>
 
<math>\vec{V}_1+\vec{V}_2 =(-6.0\hat{i}+8.0\hat{j})+(4.5\hat{i}-5.0\hat{j})=-1.5\hat{i}+3.0\hat{j}</math>
 +
 
<math>\left|\vec{V}_1+\vec{V}_2\right| =\sqrt{(-1.5)^2+(3.0)^2}=3.4</math>
 
<math>\left|\vec{V}_1+\vec{V}_2\right| =\sqrt{(-1.5)^2+(3.0)^2}=3.4</math>
 +
 
<math>\theta=\tan^{-1}\frac{3.0}{-1.5}=117^\circ</math>
 
<math>\theta=\tan^{-1}\frac{3.0}{-1.5}=117^\circ</math>
 
===(d)===
 
===(d)===
 
<math>\vec{V}_2-\vec{V}_1 =(4.5\hat{i}-5.0\hat{j})-(-6.0\hat{i}+8.0\hat{j})=10.5\hat{i}-13.0\hat{j}</math>
 
<math>\vec{V}_2-\vec{V}_1 =(4.5\hat{i}-5.0\hat{j})-(-6.0\hat{i}+8.0\hat{j})=10.5\hat{i}-13.0\hat{j}</math>
 +
 
<math>\left|\vec{V}_2-\vec{V}_1\right| =\sqrt{(10.5)^2+(-13.0)^2}=16.7</math>
 
<math>\left|\vec{V}_2-\vec{V}_1\right| =\sqrt{(10.5)^2+(-13.0)^2}=16.7</math>
 +
 
<math>\theta=\tan^{-1}\frac{-13.0}{10.5}=309^\circ</math>
 
<math>\theta=\tan^{-1}\frac{-13.0}{10.5}=309^\circ</math>

Latest revision as of 22:10, 7 October 2019

Problem

Let and . Determine the magnitude and direction of

(a)

(b)

(c)

(d)

Solution

(a)

(b)

(c)

(d)