Difference between revisions of "Chapter 3 Problem 8"
From 105/106 Lecture Notes by OBM
(Created page with "__NOTOC__ ==Problem== Let <math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math> and <math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math>. Determine the magnitude and direction of (a) <ma...") |
|||
Line 15: | Line 15: | ||
===(a)=== | ===(a)=== | ||
<math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math> | <math>\vec{V}_1 =-6.0\hat{i}+8.0\hat{j}</math> | ||
+ | |||
<math>V_1 =\sqrt{(-6.0)^2+(8.0)^2}=10</math> | <math>V_1 =\sqrt{(-6.0)^2+(8.0)^2}=10</math> | ||
+ | |||
<math>\theta=\tan^{-1}\frac{8.0}{-6.0}=127^\circ</math> | <math>\theta=\tan^{-1}\frac{8.0}{-6.0}=127^\circ</math> | ||
===(b)=== | ===(b)=== | ||
<math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math> | <math>\vec{V}_2 =4.5\hat{i}-5.0\hat{j}</math> | ||
+ | |||
<math>V_2 =\sqrt{(4.5)^2+(-5.0)^2}=6.7</math> | <math>V_2 =\sqrt{(4.5)^2+(-5.0)^2}=6.7</math> | ||
+ | |||
<math>\theta=\tan^{-1}\frac{-5.0}{4.5}=312^\circ</math> | <math>\theta=\tan^{-1}\frac{-5.0}{4.5}=312^\circ</math> | ||
===(c)=== | ===(c)=== | ||
<math>\vec{V}_1+\vec{V}_2 =(-6.0\hat{i}+8.0\hat{j})+(4.5\hat{i}-5.0\hat{j})=-1.5\hat{i}+3.0\hat{j}</math> | <math>\vec{V}_1+\vec{V}_2 =(-6.0\hat{i}+8.0\hat{j})+(4.5\hat{i}-5.0\hat{j})=-1.5\hat{i}+3.0\hat{j}</math> | ||
+ | |||
<math>\left|\vec{V}_1+\vec{V}_2\right| =\sqrt{(-1.5)^2+(3.0)^2}=3.4</math> | <math>\left|\vec{V}_1+\vec{V}_2\right| =\sqrt{(-1.5)^2+(3.0)^2}=3.4</math> | ||
+ | |||
<math>\theta=\tan^{-1}\frac{3.0}{-1.5}=117^\circ</math> | <math>\theta=\tan^{-1}\frac{3.0}{-1.5}=117^\circ</math> | ||
===(d)=== | ===(d)=== | ||
<math>\vec{V}_2-\vec{V}_1 =(4.5\hat{i}-5.0\hat{j})-(-6.0\hat{i}+8.0\hat{j})=10.5\hat{i}-13.0\hat{j}</math> | <math>\vec{V}_2-\vec{V}_1 =(4.5\hat{i}-5.0\hat{j})-(-6.0\hat{i}+8.0\hat{j})=10.5\hat{i}-13.0\hat{j}</math> | ||
+ | |||
<math>\left|\vec{V}_2-\vec{V}_1\right| =\sqrt{(10.5)^2+(-13.0)^2}=16.7</math> | <math>\left|\vec{V}_2-\vec{V}_1\right| =\sqrt{(10.5)^2+(-13.0)^2}=16.7</math> | ||
+ | |||
<math>\theta=\tan^{-1}\frac{-13.0}{10.5}=309^\circ</math> | <math>\theta=\tan^{-1}\frac{-13.0}{10.5}=309^\circ</math> |
Latest revision as of 22:10, 7 October 2019
Problem
Let and . Determine the magnitude and direction of
(a)
(b)
(c)
(d)
Solution
(a)
(b)
(c)
(d)